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Thermally stimulated modulus relaxation in 
polymers: method and interpretation 
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We have measured the thermally stimulated decay of the dielectric modulus M(T, t) for poly(vinylacetate) 
by monitoring the electric field E(t) under the condition of a constant dielectric displacement for t > 0. This 
thermally stimulated polarization experiment is realized by cooling the sample at zero field to well below its 
glass transition temperature, applying a certain amount of charge, and then recording the voltage of the 
sample capacitor U(T, t) while ramping the temperature. The result of a temperature invariant distribution 
of relaxation times observed previously in isothermal experiments allows a direct translation of M(T, t) data 
into the variation of a characteristic relaxation time T(T) or of a fictive temperature Tr(T) as a function of 
the actual temperature. © 1997 Elsevier Science Ltd. 

(Keywords: thermally stimulated discharge; dielectric relaxation and retardation; glass transition) 

INTRODUCTION 

The majority of applications of polymers relies on the 
common experience that these disordered materials 
solidify at sufficiently low temperatures below the glass 
transition temperature Tg so that the desired mechanical 
stability is achieved 1. Applications which critically 
demand a static matrix are polymer-based nonlinear 
optical devices where molecular mobility will counteract 
the alignment of the oriented hyperpolarizable species, 
thereby restoring the centrosymmetry of  the sample and 
degrading the second harmonic generation efficiency 2'3. 
The transition from the liquid state above Tg to the 
glassy frozen state below Tg is a kinetic phenomenon, 
indicating only that the system is no longer capable of 
attaining the thermodynamic equilibrium within a 
certain time scale defined by experimental conditions 4. 
The experimental signature of  the kinetic nature of Tg is 
its dependence on the cooling or heating rate or on the 
longest time scale accessible in an isothermal experiment. 
For instance, a carefully cooled sample can still display 
the behaviour of an equilibrium liquid at dielectric 
relaxation times as high as 107 s without interfering with 
the glass transition 5. Less precise but more practical 
ways of outlining Tg are for instance features in 
differential scanning calorimetry (d.s.c.) traces at a 
specified heating rate (denoted Tg in the following), a 

13 viscosity linked definition in terms of~7(Tg) = 10 Poise, 
or a dielectric relaxation time T(Tg) = 100 s 6. 

Above Tg polymers usually display dispersive, i.e. non- 
exponential, relaxation patterns ¢(t) which are well 
described by the stretched exponential or Kohlrausch- 

78 n Williams-Watts ' (KWW) functio 

O(t) = 00 exp[--(t/TKWW) ~Kww] (1) 

*To whom correspondence should be addressed 

In this KWW expression 7-KWW is a characteristic relaxa- 
tion time and /3KWW within the limits 0 </3Kww < 1 
quantifies the extent of deviation from a single exponen- 
tial decay with/3Kww = 1 or equivalently the degree of 
the relaxation time dispersion. In case the distribution of 
relaxation times (or equivalently flKww) is temperature 
invariant, the changes in T reduce to a rescaling of the 
time axis such that shifting the curves along the log(t) 
scale allows the data to form a master curve. This t ime- 
temperature superposition principle bears no general 
validity but holds for a number of polymers in a limited 
temperature interval 9. 

The characteristic or average time scale 0-) of the 
dynamics are often found to follow a Vogel-Fulcher-  
Tammann 1°'11 (VFT) like variation with temperature, 
according to 

(r) = A e x p [ B / ( T  - To) ] (2) 

An extrapolation of the VFT law towards temperatures 
below those where the relaxation time is experimentally 
accessible implies a practically frozen structure already 
at T ~ Tg - 20 K. Since the observed VFT dependence 
refers to equilibrium relaxation data, such an extrapola- 
tion towards T << Tg is valid only for systems which 
remained in thermodynamic equilibrium during the 
entire cooling process from the supercooled liquid to 
the frozen 'glassy' state. At practical cooling rates, 
however, the system will depart from the equilibrium 
behaviour near Tg to become arrested in a metastable 
state which is often described by a fictive temperature Tf 
which tends to relax towards the actual sample 
temperature T 4. The basis for Tf ¢ T is that the thermal 
history has not given the system sufficient time to relax its 
volume or density entirely. 

Among the various methods used to study the 
relaxational behaviour of soft condensed matter, dielec- 
tric relaxation techniques yielding e*(~) or e(t) offer a 
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straightforward access to the molecular dynamics over a 
large range of time scales 12'13. The slow processes 
occurring near or below the calorimetric Tg are often 
investigated by isothermal time domain techniques 12'14 
or thermally activated depolarization current 
measurements 15-2°, where in both cases the current I(t) 
or charge Q(t) is measured under the condition of a 
constant electric field E- -E0  and the polarization is 
given by P(t) cx D(t) = Q(t)/A ~ ~I(t)dt. In a recent 
paper 5 we have measured the dielectric modulus M(t) 
in isothermal experiments in the time range 10-3-106s. 
The modulus has been recorded by measuring the electric 
field E(t) of the sample capacitor under the condition 
of a constant dielectric displacement D--Do,  so that 
M(t) and E(t) are proportional to the polarization 
P(t) 12. In the frequency domain the relation between the 
retardation e*(~) and relaxation M*(w) is simply 
M*(~) = 1/e*(~) 21. Although the two quantities both 
reflect orientational polarization of permanent dipoles, 
their characteristic time scales (7-) as well as the 
corresponding distributions of 7- can differ significantly. 
For the Debye case of a single relaxation time the 
relation between the constant field (7-,) and constant 
displacement (7-M) time constants can be obtained from a 
straightforward calculation and reads 7-M = 7-, "e~/es, 
where ca and es denote the dielectric constants in the 
limit of high and low frequencies, respectively 12'22. For 
materials subject to a broad distribution of relaxation 
times, the relation between (7-M) and (7-~) has to be 
evaluated numerically with the result that the ratio 
(~-M)/(7-,) attains values significantly below e~/es 23. 
Because M(t) decays faster than the dielectric function 
e(t), this technique allowed for measuring average 
dielectric time constants 7-, between 10-2s and 107s, 
which corresponds to dynamics which are roughly up to 
five decades slower than those at the calorimetric glass 
transition with 7-, ~ 100 s 5. 

The scope of the present work is twofold. One aspect is 
to present a novel method of detecting thermally 
stimulated relaxation processes in terms of modulus 
measurements M(T, t), in the following termed TSMR 
for thermally stimulated modulus relaxation. The 
technique is to cool the unpoled sample in disc capacitor 
geometry to well below Tg, charging this capacitor to a 
practical voltage, and then monitoring the decay of the 
voltage U(t) c< E(t) while ramping the temperature. The 
second aspect is to present a straightforward method of 
data analysis with only the common prerequisite of the 
knowledge of the distribution of relaxation times whose 
form is assumed temperature invariant. Without a data 
fitting procedure, the proposed algorithm directly 
translates the M(T, t) data into a temperature dependent 
characteristic time constant. The results are then 
compared to the isothermal data for the equilibrated 
sample obtained under otherwise identical conditions. 

EXPERIMENTAL 

Poly(vinylacetate) with a viscosimetric average molecu- 
lar weight of M w --- 14000 and a dispersity of 3 was 
obtained from Wacker, Germany. The PVAc material 
has been recrystallized and dried under vacuum for 3 
days. D.s.c. determined the calorimetric glass transition 
temperature extrapolated to zero heating rate to be 
Tg----299.6K. Preparing the capacitor is achieved by 
melting PVAc on a 40 mm ~ gold plated brass disc and 

covering the sample by a second 20mm ~ plate. The 
plate separation has been defined by 50#m Teflon- 
spacers of negligible area relative to the capacitor discs. 
The sample capacitor was temperature controlled by a 
N 2 gas flow emerging from a I-N 2 dewar which could be 
appropriately heated prior to passing the sample. For 
measuring the sample temperature we employed a Pt-100 
sensor mounted inside the larger brass plate of the 
capacitor. 

At t -- 0 the capacitor is charged to a voltage of ~ 30 V 
within 10#s and then insulated entirely from the 
charging circuit supplied by the voltage source of the 
electrometer. The connection between sample and 
electrometer Keithley 6517 (R i > 200Tf~) consists of a 
coaxial air line with C ~ 15 pF inside the cryostat and a 
50cm low-noise triax cable between cryostat and 
electrometer input. 

The procedure of the temperature ramping experiment 
is as follows. Sample, experimental setup, and charging 
voltage for the TSMR run were identical to the 
isothermal cases reported previously 5. The PVAc has 
been equilibrated well above its Tg and cooled at a rate 
of 5Kmin -1 to the start temperature of 0°C without 
application of an electric field. At T = 0°C (and t = 0) 
the capacitor is charged, the temperature is increased at a 
rate of ~ 20mKs -1 = 1.2Kmin -1, and both tempera- 
ture and voltage across the capacitor are recorded as a 
function of time in steps of 3.6 s. 

RESULTS 

In Figure 1 we show the temporal evolution of the 
temperature in course of the TSMR experiment. As 
will be discussed below the data analysis is not bounded 
to a linear ramp as long as T(t) is known. The 
resulting TSMR trace M(T, t) in the range 0°C to 50°C 
normalized to M~ = £~1 is displayed in Figure 2, 
which also includes the derivative OM(T,t)/Ot as a 
dashed curve. The value for OM(T, t)/Ot at time t i is 
obtained without any smoothing procedures using 
[M( T, ti+l) - M( T, ti_l)]/[ti÷l - ti_l], where ti-l, ti, and 
ti+ 1 a r e  three successive data points from the M(T, t) 
curve. Both curves in Figure 2 are shown with their entire 
experimental noise, i.e. without smoothing or fitting. As 
obvious from the isothermal results 5 the features below 
305 K reflect the structural a-process of PVAc, whereas 
at higher temperatures M(T,t)  is governed by d.c.- 
conductivity. 

3 3 0  

\ 3 0 0  

2 7 0  ' ' ' ~ ' 
0 1 2 3 

"l: / 1 0 3 s  

Figure 1 Sample temperature vs. time during the T S M R  T(t) ramp 
(solid line). The dashed line indicates the average heating rate of  
2 0 i n K s  -1 or 1 . 2Kmin  I. Note that  the data analysis is not  restricted 
to a linear T- t  relation 
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Figure 2 Temperature (and implicitly time) dependence of the voltage 
U(T, t) across the sample capacitor at constant dielectric displacement 
Do in course of the TSMR experiment on PVAc using the temperature 
ramp of Figure 1. The solid line plots the results in terms of the modulus 
M(T,t) [e( U(T,t)] normalized to Moo. The dashed line shows 
OM(T, t)/Ot in arbitrary units with the a-peak at T ~ 298 K and the 
p-peak at T ~ 317K 

The isothermal results in the range 291 K < T < 323 K 
obtained previously 5 for this sample can be summarized 
as follows. Including the conductivity contribution with 
time constant Tcr=O'dclMsleo, the entire M(t)/Mo~ 
curves are well represented by a K W W  type structural 
relaxation and an exponential conductivity term 

M(t) = (Mo~ - Ms)exp[--(t/7-KWW) ~xww] 

+ M s exp[--tadcMseol], (3) 

where Mo~ = e~ 1 and Ms = es 1 denote the dielectric 
modulus in the limits t--~ c~ and t - *  0, respectively, 
regarding only the orientational polarization effects, i.e. 
for ado = 0. The relaxation time 7-KWW follows a VFT 
type temperature dependence [equation (2)] with the 
parameters lOgl0(A) = 11.4, B = 1184 K and T O = 261 K. 
The dispersion parameter ~KWW is 0.40 ± 0.02 with a 
slightly systematic variation with temperature as low as 
d/3KW w/d  T < 10 -3 K-1 according to linear regression, i.e. 
flKWW # ~Kww(T). Since this result for ~3KW w implies a 
temperature independant form of the distribution of 
relaxation times, the time-temperature superposition 
principle holds for PVAc in this experimental temperature 
range to a good approximation. 

DATA ANALYSIS 

In standard measurements of thermally stimulated 
depolarization (TSD) measurements one records the 
current I(T,  t) at constant field E = 0 after preparing an 
electret at temperatures well b e l o w  Tg 15'20. The resulting 
I(T, t )  trace relates to the derivative OP/Ot of the 
polarization and displays a peak at temperatures where 
some motion of charge is active on a time scale set by the 
heating rate 15. It is only for the sake of a rough 
comparison that we show in Figure 2 the derivative 
OM(T, t)/Ot, which is therefore similar to TSD curves 19. 
It should be emphasized, however, that the polarizations 
P(T,t)  measured under constant field (TSD) and 
constant displacement (TSMR) conditions are not 
related in a trivial manner. 

The interpretation of TSD results has been addressed 
frequently15 20,24,25 and in practically all cases it seems 
impossible to unambiguously extract both the distribu- 
tion of relaxation times and the temperature dependence 
from a single TSD run 26. The common requirement for a 
reasonable data analysis is the knowledge of the 

distribution G(7-) of retardation or relaxation times 
whose functional form is assumed to be temperature 
invariant. For PVAc in the temperature range of interest, 
this condition is fulfilled according to the isothermal 
results. In terms of the probability density g(~-)= 
dG(7-)/dT- the orientational polarizability contribution 
to the modulus at constant temperature To reads 

j0 o M(To, t) = Ms + (Ms  - Ms) g(x)e-t/x~(r°)dx (4) 

where g(x) is normalized such that ~ g ( x ) d x =  
G(ec) = 1, G(7-) being the distribution function. Instead 
of using g(r), we introduce g(x) such that x reflects a 
dimensionless scaling parameter for 7- (appearing as 
x .  7-), so that g(x) will not shift with 7- or T. In this 
notation, g(x) is independent of temperature and the 
variation of the average relaxation time scale with 
temperature is completely cast into 7-(T). Following 
common practice the temperature dependences of Ms 
and M s  are also assumed negligible. Instead of the 
numerically difficult probability density gKww(X) 27 
related to a KWW type decay, we prefer employing the 
more practical function griN(X) related to the commonl~ 
used dielectric function e* (w) of the Havriliak-Negami ~ 
(HN) type given by 

e'(w) = coo + (es - eo~)[1 + (iWTHN)aHN] -THN (5) 

In equation (5) the shape parameters anN and 7HN in 
the limits 0 < aHN , aHN~/HN < 1 characterize the sym- 
metric and asymmetric broadening of the dielectric loss, 
respectively, while aHN = 7HN = 1 restores the case 
equivalent to a single exponential decay in the time 
domain. The probability density for 7- leading to the form 
of equation (5) takes the f o r m  29 

(7-/7-HN) a7 s in( '~)  

griN(7-) = 7rT-[(7-/7-HN)2~ + 2(7-/7-HN) ~ cos(Tra) + 1] "y/2 

(6) 

with 

= arctan 
sin(Tra) 

(7-/7-HN)" + cos(  ) 

The values O~HN = 0.8 and 7HN = 0.4 inserted in 
equation (6) yield a density griN(T) which resembles 
gKWW(7) for /3KW w = 0.40 with a sufficient degree of 
accuracy for the present purpose. Therefore we employ 
griN(T) with O~HN = 0.8,  "YHN = 0.4,  and 7-HN = 1 as g(x) 
in equation (4) so that M(t)o~ exp[-(t/z) °4] would 
result for a constant temperature. The above special case 
for g(z) is depicted as a solid line in Figure 3 in terms of 
the probability density 7.g(z) vs. ln('r). Consider now an 
isothermal relaxation subject to the above distribution 
of z, which reflects the picture of parallel first order 
reactions with rate constants 1/7. occurring with 
probabilities as shown in Figure 3. The ensemble 
averaged decay is non-exponential because sites with 
small 7 will govern the short time response, whereas the 
density at larger 7- will become effective at longer times. 
In the following, the integrand in equation (4), 
g(T) exp(--t/7.), shall be denoted gocc(7., t) which can be 
interpreted as the probability density of those sites which 
have not yet contributed to the decay at time t, i.e. the 
remaining occupation of g(7.) as a function of time. The 
evolution of go,c(7., t) is also shown in Figure 3 as dashed 
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Figure 3 The solid line plots the probability density hHN(lnr)= 
TgHN(T) (normalized to its peak value) according to equation (6) for the 
parameters anN = 0.8, 7nN = 0.4 and THN = 1. The dashed lines plot 
Tgoce(r, t) = Tg(T) exp(--t/r) for times In(t) = --6... + 1 in steps of 1 
and in the order from top to bottom curve. The function goce(r, t) 
corresponds to the probability density of sites or 'relaxors' which are 
not yet equilibrated at time t 

lines for a series of  logarithmically spaced times. The 
slowing down of  a KWW type decay relative to the initial 
exponential decrease can thus be viewed as a conse- 
quence of gocc(T, t) shifting towards larger values of  "r as 
time proceeds. 

For  analysing the TSMR trace M(T, t) along the 
above lines it suffices to find the appropriate T(t) such 
that 

jo 1 x-lgoce(X, t)dx M(T,  t) (7) 
aM(T,  t) _ 

Ot 

with 

Ogocc(X, t) 1 
at - x~-(t) g°cc(X't) and gocc(x,O) = g(x) 

The basis for equation (7) is that at a given time t' the 
system memorizes its kinetic history for t < t' only by 
means of the evolution ofgocc(X, t) as defined above and 
sketched in Figure 3. Solving for r(t) in equation (7) at 
given g(x) and M(T,  t) reduces to a straightforward 
procedure if one recalls that for a decay with arbitrary 
g(r) one has 

: de(t)  = 
¢ ( t ) =  g(r) e-t/~dT =~ dt ,=0 - - ( l / T ) ( 8 )  

A practical numerical route for evaluating equation (7) is 
as follows. At time to one has to set 

r(to) ---- -- J x- '  goce(X, to) dx M(T, to)At/ 

[M(T, t o + At) -- M(T, to)] 

where the integral represents the average (1/x) of the 
current occupational density gocc(X, to). With this 7(to) 
one calculates gocc(X, to + At) according to equation (7), 
repeats the first step at to + At, and so on. For  
sufficiently small At one obtains ~-(t) such that equation 
(7) reproduces the M(T, t )  data within any desired 
accuracy. Note that the temporal evolution of the 
temperature T(t) can be ignored up to this stage. Since 
T has been introduced such that it contains no explicit 
dependence on time, we use T(t) to translate 7(t) into 
~-(T), which now indicates how temperature shifts the 
probability density g(r)  on the ln(~-) scale. 

Analytically or numerically, the above procedure 
outlined by equation (7) and below can be shown to 

yield the identical result as the standard formulation, 

M(r,  t) = Ms + - Ms) 

x jog(X)exp ( - I i  1/x~-(t')dt')dx (9) 

used for expressing M(T, t) in terms o fg (x )  and T(T). 
However, because equation (9) does not serve as a 
straightforward recipe for deriving T(T), this formula- 
tion is useful only for a fit routine which optimizes T(T) 
such that M(T, t) is recovered at a given probability 
density of  relaxation times. 

The TSMR data shown in Figure 2 have been analysed 
along the above lines. In addition, however, a 6-like peak 
with relative weight Ms/M~ = 0.436 is added to the 
probability density g(r) at ln ( r~ )=  +9.6 in order to 
account for the contribution of  d.c.-conductivity 3°. In 
Figure 2 the initial decay of  the level of Ms~Moo is due to 
the structural relaxation (a-peak), the remaining 
decrease stems from the ohmic conductivity (trot) which 
leads to an exponential decay in an isothermal M(t) 
experiment (p-peak) 15 20. Both values, To and Ms~Moo 
are known from the isothermal data, so that the 
calculation for 7(T) involves no free parameter. The 
result for T(T) inferred from the data of  Figure 2 is 
outlined as a dashed line in Figure 4, which also 
compares this ~-(T) from the TSMR experiment to the 
isothermal equilibrium data. The deviations between 
T(T) and the equilibrium data above T = 306 K arise 
because d.c.-conductivity and a-process are subject to 
slightly different temperature dependences, which has 
been ignored in the above calculation. Because the HN- 
probability density griN(T) has been used with ~-HN -- 1, 
the T(T) result actually refers to ~-HN(T) SO that the 
isothermal r-data in Figure 4 are scaled accordingly. 

DISCUSSION 

A time domain measurement of  the dielectric modulus is 
a conceptually simple method for detecting dielectric 
relaxations, the only critical experimental requirement 
being the high impedance of  the voltmeter if time scales 

6 of  > 10 s are to be addressed. In the TSMR experiment 
described above typical acquisition times are some 10 3 s, 
so that standard devices with 1TQ input and 10V 
voltage range are sufficient in this case. As the starting 
temperature T O is usually selected to assume a negligible 

+3 

I-, 
-% 

o) - 3  
2 

-6 
i i i i i 

270 290 310 330 
T / K 

Figure 4 Temperature dependence of the characterstic relaxation 
times rUN from modulus measurements on PVAc. Dots refer to 
isothermal equilibrium measurements from previous work 5. The solid 
line is a VFT fit to the isothermal data. The dashed line is the r(T) result 
from the TSMR experiment obtained according to the procedure 
described in the text [see equation (7) and below] with no free parameter 
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decay at T = To, charging the capacitor via a relay 
within ~ 10ms to U0 = 10V is sufficiently fast for a 
TSMR experiment. For low loss materials the voltmeter 
should resolve the range U0 to Uoo = eoo/e~ U0, where 
Uoo is the plateau voltage before d.c.-conductivity forces 
U(t) to zero. We emphasize again that the pattern of 
polarization or depolarization is not a material specific 
quantity alone, but also depends on the experimental 
situation, constant displacement Do or constant field 
E021'22. Equivalently, for a comparison of modulus 
results M(t) to standard dielectric data e(t) it should be 
kept in mind that M(t) decays faster by at least a factor 
of es/Coo relative to e(t) as inferred from conventional 
time domain dielectric techniques at constant field. 

For practical purposes, the TSMR technique pre- 
sented here bears the advantage of having to detect only 
moderate voltages after cooling the sample at zero field. 
Instead, the TSD method either yields very small 
currents or the sample must be polarized above Tg with 
sufficiently high electric fields. In addition, the direct 
evaluation of M(T, t) --* "r(T) at a certain temperature 
Ta uses the data for T < Ta only, so that a real time 
display of T(T) in the course of the TSMR run is 
possible. For the material science this resembles an 
effective tool for characterizing the molecular dynamics 
in the glassy state of matter as a function of thermal 
treatment or annealing. 

The direct numerical analysis outlined above is of course 
not restricted to the TSMR technique, but can equally be 
applied to the polarization changes D(t) from TSD 
experiments. Assuming the knowledge and temperature- 
invariance of the relaxation or retardation time distribu- 
tion, casting the P(T, t) data into a T(T) representation in 
the above manner can be considered exact and does not 
require assumptions about the functional dependence of 
T(T) nor does it involve fit procedures. 

The observation in Figure 4 of a significant and 
systematic deviation between equilibrium and thermally 
stimulated or non-equilibrium data is a common 
feature 31 and can be rationalized by straightforward 
arguments. At the calorimetric glass transition 
T~ = 299.6K the average equilibration time is several 
minutes, so that cooling the sample at a rate of 

5Kmin -1 must result in a departure from thermo- 
dynamic equilibrium at temperatures near 300K for 
PVAc. Therefore, critical properties like free volume, 
density, or configurational entropy become arrested at 
values related to temperatures Tf in excess of the actual 
sample temperature T upon preparing the initial state at 
T O << T~. Thereby, Tf naturally depends on the thermal 
history of the sample. If the dielectric relaxation time 
T(T) is taken as a measure for the fictive temperature, Tf 
has not attained values below ~ 290K, although the 
TSMR run started at To = 273 K. Therefore, without 
having to extrapolate the measurement VFT-like equili- 
brium data %q(T) we can obtain Tf(T) as shown in 
Figure 5 via ~-(Tf) = 7-eq(T), where T(Tf)  refers to the 
TSMR result. 

A more quantitative approach to such a relaxation 
time scenario has been given by Adam and Gibbs 32 on 
the basis of 'cooperatively rearranging regions' subject to 
a temperature dependent spatial extent. The resulting 
relaxation time r as a function of configurational 
entropy Sc = Sc(T) takes the form 

T = 7" 0 exp[C/TSc] (10) 

3 1 0  

~', 3 0 0  

i . -  

2 9 0  ~ ¢ ~ ~ 
2 7 0  2 9 0  3 1 0  3 3 0  

T / K 

Figure 5 Fictive temperature Tf(T) vs. sample temperature T as 
obtained from the TSM R data for PVAc on the basis of r(Tf) = Teq (T) 
where T and Teq refer to the thermally stimulated and equilibrium 
isothermal data, respectively. Note that no extrapolation of %q(T) 
beyond the experimental temperature range is involved 

with 

~ n ( T -  Too)/T, T > Tg 

S~ 
[,Sc(Tg) r < Tg 

where in the equilibrium case (T >_ Tg)Sc is assumed 
to decrease linearly with T such that it vanishes at a 
finite temperature Too. For temperatures T > Tg the 
T(T) curve expected on the basis of equation (10) 
displays a Vogel-Fulcher-Tammann type of behaviour, 
r = "r o exp[C/~(T-  Too)]. Below Tg the configurational 
entropy (but not the relaxation itself) becomes frozen at 
its value Se(Tg), i.e. Sc no longer depends on T in this 
range, with the consequence that T(T) in equation (10) 
merges into an Arrhenius like temperature dependence 
r=roexp[C/TSc(Tg)]. At least qualitatively, such a 
model conforms well with the observed features com- 
piled in Figure 4. The difference between the isothermal 
and thermally stimulated T(T) also emerges naturally 
from the above picture: in the TSMR experiment the 
cooling and heating rates are of the order of the rates 
used in the calorimetric determination of the glass 
transition temperature Tg = 299.6 K for PVAc. Under 
the experimental condition yielding the isothermal 
equilibrium data the glass transition has been shifted to 
Tg < 291 K. The latter case thus results in a VFT like 
temperature dependence of the relaxation time over the 
entire experimental range. The former case, however, 
displays a more Arrhenius like behaviour for T < Tg 
and merges into the VFT curve for higher temperatures 
T > Tg, where the system is capable of equilibrating 
sufficiently fast. 

From the above understanding of the TSMR results it 
follows that only little can be learned about the 
equilibrium dynamics if cooling rates around several 
K min-I are used in preparing the thermally stimulated 
experiment. Note that the a-process contribution to 
M(T, t) has relaxed almost entirely in the temperature 
range T < Tg where non-equilibrium conditions prevail. 
In order to retrieve the equilibrium data shown for 
T _> 291 K from a single TSMR run an extremely slow 
cooling rate is necessary such that preparing the initial 
electret would involve several 106 s, i.e. the same time is 
needed to have equilibrated the sample prior to taking 
the isothermal data point at 291 K. Consequently, the 
formation of a glassy state at practical cooling rates 
will by no means lead to properties expected on the 

[equilibrium 

Sc = Sc(T)] 

(frozen S~ = constant) 
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bas i s  o f  e x t r a p o l a t i n g  e q u i l i b r i u m  d a t a  t o w a r d s  l ower  
t e m p e r a t u r e s .  
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